Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3-Benzoylmethylene-1-methyl-3,4-dihydro-quinoxalin-2(1H)-one

Yun Liu, Zhi-Feng Lu, Yong-Miao Shen and Jian-Hua Xu*

Department of Chemistry, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: xujh@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=288 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.046$
$w R$ factor $=0.107$
Data-to-parameter ratio $=12.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$, the quinoxaline ring is essentially planar and makes a dihedral angle of 9.1 (2) ${ }^{\circ}$ with the benzene ring of the benzoylmethylene group. There are intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

The photochemical reactions of compounds containing the $\mathrm{C}=\mathrm{N}$ double bond have not been as extensively investigated as those of carbonyl compounds. Nishio (1984) discovered that irradiation of quinoxalin-2-ones with alkenes results in regioselective $[2+2]$-cycloaddition to the $\mathrm{C}=\mathrm{N}$ double bond. However, photoreactions of quinoxalin-2-ones with alkynes have not been reported before. We have recently investigated photo-induced reactions between quinoxalin-2-ones and phenylacetylenes. The title compound, (I), a β-benzoylmethylene derivative of quinoxalin-2-one, was isolated from the photoreaction of N -methylquinoxalin-2-one with phenylacetylene.

(I)

The geometrical parameters of the quinoxaline moiety in (I) (N1/C9/C10/N2/C12-C17) are comparable to those of the related structures reported earlier (Stepien et al., 1976). The quinoxaline moiety is essentially planar (Fig. 1), mainly owing to the $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ conjugation, the dihedral angle between the planes of its heterocyclic and benzene ring ($\mathrm{C} 12-$ C 17) being $0.7(2)^{\circ}$. The acetyl group ($\mathrm{O} 1 / \mathrm{C} 7 / \mathrm{C} 8$) bonded to atom C 9 is twisted out of the quinoxaline plane by a small angle of $0.7(2)^{\circ}$, thus indicating that the acetyl group tends to be coplanar with the quinoxaline system, obviously as a result of the π-conjugation involving the acetyl $\mathrm{C}=\mathrm{O}$ bond. The $\mathrm{C} 1-$ C6 benzene ring is almost coplanar with the quinoxaline moiety, with a dihedral angle of $9.1(2)^{\circ}$. There are an intramolecular $\mathrm{N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1$ hydrogen bond and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

Received 28 June 2005 Accepted 25 July 2005 Online 30 July 2005

Experimental

Compound (I) was prepared by the photo-induced reaction of a benzene solution of N-methylquinoxaline-2-one with an excess amount of phenylacetylene, irradiated by the light of wavelength longer than 330 nm for 48 h , and was isolated by column chromatography of the reaction mixture after evaporation of the solvent on silica gel. Single crystals of (I) were obtained by slow evaporation from a petroleum ether-ethyl acetate (3:1) solvent system (yield 13.6%).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \\
& M_{r}=278.30 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=9.6050(19) \AA \\
& b=10.767(2) \AA \\
& c=13.374(3) \AA \\
& \beta=104.36(3)^{\circ} \\
& V=1339.9(5) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4

diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(XCAD4; Harms \& Wocadlo, 1995)
$T_{\text {min }}=0.946, T_{\text {max }}=0.975$
2510 measured reflections
2363 independent reflections

$$
\begin{aligned}
& D_{x}=1.380 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 25 reflections
$\theta=10-13^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=288$ (2) K
Block, red
$0.42 \times 0.31 \times 0.28 \mathrm{~mm}$

1356 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.068$
$\theta_{\text {max }}=25.0^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 12$
$l=-15 \rightarrow 15$
3 standard reflections every 200 reflections intensity decay: none

Refinement

Refinement on F^{2} $R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.107$
$S=1.00$
2363 reflections
191 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.03 P)^{2}\right. \\
& +0.49 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2{F_{\mathrm{c}}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXTL } \\
& \text { Extinction coefficient: } 0.0139 \text { (12) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{O} 1-\mathrm{C} 7$	$1.256(2)$	$\mathrm{N} 2-\mathrm{C} 12$	$1.408(3)$
$\mathrm{O} 2-\mathrm{C} 10$	$1.225(2)$	$\mathrm{N} 2-\mathrm{C} 11$	$1.468(3)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.345(2)$	$\mathrm{C} 3-\mathrm{C} 7$	$1.499(3)$
$\mathrm{N} 1-\mathrm{C} 17$	$1.389(3)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.423(3)$
$\mathrm{N} 2-\mathrm{C} 10$	$1.373(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.375(3)$
$\mathrm{C} 9-\mathrm{N} 1-\mathrm{C} 17$	$123.96(19)$	$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 3$	$120.2(2)$
$\mathrm{C} 10-\mathrm{N} 2-\mathrm{C} 12$	$122.57(19)$	$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$123.4(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$121.9(2)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{N} 2$	$121.5(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 3$	$117.9(2)$	$\mathrm{O} 2-\mathrm{C} 10-\mathrm{C} 9$	$121.2(2)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 8$	$-8.2(3)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1$	$-0.1(3)$
$\mathrm{C} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$178.0(2)$		

Figure 1
The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1$	0.86	2.00	$2.653(2)$	132
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O}^{\mathrm{i}}$	0.93	2.55	$3.382(3)$	149
$\mathrm{C}^{\mathrm{H}} 6-\mathrm{H} 16 \cdots \mathrm{O}^{\mathrm{ii}}$	0.93	2.50	$3.356(3)$	153
Symmetry codes: (i) $-x-\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2} ;$ (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$				

The H atoms were positioned geometrically and were treated as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$, and $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}($ parent atom $)$ or $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{C}_{\text {methyl }}\right)$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

This work was supported by the National Natural Science
Foundation of China (NSFC, No. 20272024).

References

Enraf-Nonius. (1989). CAD-4 Software. Version 5. Enraf-Nonius, Delft, The Netherlands.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Nishio, T. (1984). J. Org. Chem. 49, 827-832.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stepien, A., Grabowski, M. J., Cygler, M. \& Wajsman, E. (1976). Acta Cryst. B32, 2048-2050.

